Answer:
The molarity of the solution is 0.29 
Explanation:
Molarity, or molar concentration, is a measure of the concentration of a solute in a solution, be it some molecular, ionic or atomic species. It is defined as the number of moles of solute that are dissolved in a given volume.
Molarity is calculated as the quotient between the number of moles of solutes and the volume of the solution:

Molarity is expressed in units
.
In this case:
- number of moles of solute= 2.1 moles
- volume= 7.3 liters
Replacing:

Molarity= 0.29 
<u><em>The molarity of the solution is 0.29 </em></u>
<u><em></em></u>
6 moles to equal that I do t know for sure though
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
The smallest unit that can exist as an element and still have proprieties of that element is an Atom<span />