Answer:
carbon dioxide is added to the atmosphere naturally when organisms respire or decompose,
Explanation:
The volume of the gas at a temperature of 405.0 K would be 607.5 mL. Making option D the right answer to the question.
What is the volume of the gas?
To find the volume of the gas, the equation to be used would have to be combine gas law.
Combine gas law as the name suggest uses the combination of Charles law which measures Volume against temperature, and Gay-Lussac's law which measures Pressure/Temperature, and Boyle's law which measures pressure X volume where k is constant.
Using the combine law to find the volume, we have:
P₁V₁/T₁=P₂V₂/T₂
Where P₁ = initial pressure
V₁ = initial volume
T₁ = initial temperature
P₂ = final pressure
V₂ = final volume
T₂ = final temperature
P₁ = 2.25atm
V₁ = 450.0 mL
T₁ = 300 K
T₂ = 405.0 K
V₂ = ?
D) 607.5 mL
= [2.25(450)]÷300=[2.25(V₂]÷405
Making V₂ the subject
3.375=2.25 V₂ ÷ 405
V₂ = 3.375 x 405 ÷ 2.25
V₂ = 607.5 mL
In summary, a gas with an initial pressure of 2.25atm, an initial pressure of 450.0 mL and an initial temperature of 300 K would have a final volume of 607.5 mL if the temperature is increased to 405.0 K.
Learn more about Combine gas law here: brainly.com/question/13538773
#SPJ1
Explanation:
A. Hydrogen bonding is present in CS2 but not in CO2.
B. CS2 has greater dipole moment than CO2 and thus the dipole-dipole forces in CS2 are stronger.
C. CS2 partly dissociates to form ions and CO2 does not. Therefore, ion-dipole interactions are present in CS2 but not in CO2.
D. The dispersion forces are greater in CS2 than in CO2.
<u><em>PLS MARK BRAINLIEST :D</em></u>
Hydrophobic molecules tend to be nonpolar molecules that group together to form micelles rather than be exposed to water. Hydrophobic molecules typically dissolve in nonpolar solvents (e.g., organic solvents).