Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!
I think it’s 8 hours. I’m sorry if I’m wrong.
I just did 400 divided by 50
displacement is given by equation

now at t = 5 s the position is

similarly position at t = 9 s

so the displacement of object in given interval of time will be

time interval

now the average velocity will be given as


so its average speed is 252 m/s
Answer:
Explanation:
An insulator. You can see ceramic insulators on telephone poles and power poles if you look carefully. If you live in a city, somewhere in that city is a power station. The insulators are huge. They have to be. The currents are very large in many cases.
The angle at which the sunlight received at a location on Earth spread out over the largest area is 10°. Last option is correct.
<h3>What is sunlight?</h3>
The light coming from the Sun reaching the Earth's surface is called as Sunlight.
When the sun is overhead, the intensity is high because sun's rays are perpendicular to the earth's surface, so the energy spreads over a small area and the heat is too high in that region.
When, the angle is smaller, the sunlight will spread out over a larger area.
Thus, at 10° the sunlight received at a location on Earth spread out over the largest area. Last option is correct.
Learn more about Sunlight.
brainly.com/question/23504828
#SPJ1