Answer:
The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.
Explanation:
Given that,
Initial velocity u= 128 ft/sec
Equation of height
....(I)
(a). We need to calculate the maximum height
Firstly we need to calculate the time

From equation (I)




Now, for maximum height
Put the value of t in equation (I)


(b). The number of seconds it takes the object to hit the ground.
We know that, when the object reaches ground the height becomes zero




Hence, The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.
The melting of polar ice is one effect of the greenhouse effect, or also global warming.
The greenhouse effect, as defined by Merriam-Webster, is "the <span>warming of the surface and lower atmosphere of a planet (as Earth or Venus) that is caused by conversion of solar radiation into heat in a process involving selective transmission of short wave solar radiation by the atmosphere, its absorption by the planet's surface, and reradiation as infrared which is absorbed and partly reradiated back to the surface by atmospheric gases".
In short, "</span>the warming of the surface and lower atmosphere of a planet".
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
In your question where as a golf ball is struck at a ground level and the speed of the ball as a function of time is in the figure where time t=0 and va = 16m/s and vb=32m/s. The following is the answer:
a) How far does the golf ball travel horizontally before returning to ground level?
-<span>80m</span>
<span>(b) What is the maximum height above ground level attained by the ball?
</span>-39.87m
Answer:
The given figure shows two men M and N facing two flat and hard walls, wall 1 and wall 2. Man N fires a gun. Man M hears two echoes, one from wall 1 and second from wall 2. The speed of sound in
air is given to be 325 m/s. After the firing of the gun by the man N, the man M will hear the first echo in how many seconds?