Answer:
Back titration is a titration done in reverse; instead of titrating the original sample, a known excess of standard reagent is added to the solution, and the excess is titrated.
I hope it's helpful!
ahjwjj kuehne wbveje uwieue jesus suuudb jesus jeiiien jwiiwbbii nwjjjjsk siiiusbitsisbgeu3 Hussey hey3 suu3n su3b euej
Answer:
You should start with 63.54 grams of copper.
Explanation:
The chemical reactions are processes in which the nature of the substances changes, that is, from some initial substances called reactants, totally different ones called products are obtained.
In the chemical reaction, the formulas of reagents and products appear preceded by numbers (the stoichiometric coefficients) that indicate the proportions according to which the transformation occurs. So you can say that stoichiometry establishes relationships between the molecules or elements that make up the reactants of a chemical equation with the products of said reaction. The relationships that are established are MOLAR relationships between the compounds or elements that make up the chemical equation: always in MOLES.
The stoichiometric coefficients of a chemical equation are due to the fact that the atoms present before the reaction must be the same after the reaction, although they will have been rearranged to produce new substances.
If you want 2 moles of silver (Ag), for stoichiometry of the reaction you need a moles of copper Cu. Being the molar mass of copper Cu 63.54 g / mole, then:
1 mole*63.54 g/mole= 63.54 g
<u><em>
You should start with 63.54 grams of copper.</em></u>
<u><em></em></u>
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
Answer:
the formula is 164.088 g/mol
Explanation: