Replacement of methyl groups of camphor is a reduction mechanism. Camphor is a bridged bi-cyclic compound. If you observe the structure of camphor the methyl group is placed with one carbon bridge (7, 7) and two carbon bridge (1). Attack from face of one carbon bridge is termed as exo attack whereas from face of two carbon bridge is termed as endo attack. So replacement will lead to mix of both and formation of two stereo isomers.
Reduction mechanism is often shown with a U-shaped arrow pointing the attack by ion such as in nucleophilic addition reaction.
Answer:
24 is the answer of this question
Answer:
You get some type of pressure that you start to feel in your muscles and joints from gravity and movement. How do they say it? Something called "seat-of-the-pants" (something like that). You get some type of pressure, and your body senses it, and it knows when you are upside-down or not, because if you're not, then you won't get any pressure in your muscle.
Hope this helped!
Have a supercalifragilisticexpialidocious day!
The percent of histidine side chains would be deprotonated at pH 7.5 is 5.77 %.
<h3>What is pKa?</h3>
The term pKa refers to the negative logarithm of the acid dissociation constant (Ka). The pH is the negative logarithm of the hydrogen ion concentration.
Hence;
Ka = Antilog (-6) =
[H^+] = Antilog (-7.5) = 
We now have to use the formula;
α = ![\sqrt{} \frac{Ka}{[H^+] }](https://tex.z-dn.net/?f=%5Csqrt%7B%7D%20%5Cfrac%7BKa%7D%7B%5BH%5E%2B%5D%20%7D)
α = 
α = 5.77 %
Hence, the percent of histidine side chains would be deprotonated at pH 7.5 is 5.77 %.
Learn more about percent dissociation: brainly.com/question/12273293