Answer:
D. All of the above
Explanation:
Because all of these have something to do with how glaciers are affecting the planet.
The atomic theory started with Democritus, who stated that all space was made up of indivisible particles called atoms, though Aristotles refuted that statement by saying that matter didn’t exist, he believed in the four elements: air, fire, water, and earth. Then came Dalton, who revived Democritus’s ideas and proposed the law of multiple proportions, he revived the idea that all space was made of atoms. Soon after, J.J Thompson discovered the electron by using cathode rays. Max Planck developed the quantum theory by stating that electromagnetic radiation could only be emitted in quantized form (later called quanta). Einstein furthered this idea with studies of light. Robert Millikan eventually measured the charge of a single electron. Ernest Rutherford used a gold foil experiment and discovered the nuclei, considering his alpha particles were deflected by some object. Niels Bohr made the atomic model with electrons spinning around an atom’s nucleus, Erwin Schrodinger describes how electrons have wave like properties. James Chadwick then discovers the neutron!
There ya have it!
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time.
Reactions that happen quickly have a high rate of reaction. For example, the chemical weathering of rocks is a very slow reaction: it has a low rate of reaction. Explosions are very fast reactions: they have a high rate of reaction. Rate of reaction is an example of a compound measure.
Answer:
All of the above.
Explanation:
In positive deviation from Raoult's Law occur when the vapour pressure of components is greater than what is expected value in Raoult's law.
When a solution is non ideal then it shows positive or negative deviation.
Let two solutions A and B to form non- ideal solutions.let the vapour pressure of component A is
and vapour pressure of component B is
.
= Vapour pressure of component A in pure form
= Vapour pressure of component B in pure form
=Mole fraction of component A
=Mole fraction of component B
The interaction between A- B is less than the interaction A- A and B-B interaction.Therefore, the escaping tendency of liquid molecules in mixture is greater than the escaping tendency in pure form.Hence, the vapour pressure of a mixture is greater than the initial value of vapour pressure.
,
Therefore, 
Therefore, the enthalpy of mixing is greater than zero and change in volume is greater than zero.
Hence, option a,b,c and d are true.
This is Bohrs model for potassium