Answer: 24.13 g Cu
Explanation:
<u>Given for this question:</u>
M of CuO = 30 g
m of CuO = 79.5 g/mol
Number of moles of CuO = (given mass ÷ molar mass) = (30 ÷ 79.5) mol
= 0.38 mol
The max number of CuO (s) that can be produced by the reaction of excess methane can be solved with this reaction:
CuO(s) + CH4(l) ------> H2O(l) + Cu(s) + CO2(g)
The balanced equation can be obtained by placing coefficients as needed and making sure the number of atoms of each element on the reactant side is equal to the number of atoms of each element on the product side
4CuO(s) + CH4(l) ----> 2H2O(l) + 4Cu(s) + CO2(g)
From the stoichiometry of the balanced equation:
4 moles of CuO gives 4 moles of Cu
1 mole of CuO gives 1 mol of Cu
0.38 mol of CuO gives 0.38 mol of Cu
Therefore, the grams of Cu that can be produced = 0.38 × molar mass of Cu
= 0.38 × 63.5 g
= 24.13 grams
Therefore, 24.13 grams of copper could be produced by the reaction of 30.0 of copper oxide with excess methane
Answer A,They can form a triple covalent bond.
Explanation:
Answer:
1610.7 g is the weigh for 4.64×10²⁴ atoms of Bi
Explanation:
Let's do the required conversions:
1 mol of atoms has 6.02×10²³ atoms
Bi → 1 mol of bismuth weighs 208.98 grams
Let's do the rules of three:
6.02×10²³ atoms are the amount of 1 mol of Bi
4.64×10²⁴ atoms are contained in (4.64×10²⁴ . 1) /6.02×10²³ = 7.71 moles
1 mol of Bi weighs 208.98 g
7.71 moles of Bi must weigh (7.71 . 208.98 ) /1 = 1610.7 g
Answer:
The density of block is 2 g/mL.
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
mass of block = 12 g
volume = 6 mL
density = ?
Now we will put the values in the formula,
d= m/v
d = 12 g/ 6 mL
d = 2 g/mL
so, the density of block is 2 g/mL .
The given reaction is:
3Fe + 4H2O → Fe3O4 + 4H2
Given:
Mass of Fe = 354 g
Mass of H2O = 839 g
Calculation:
Step 1 : Find the limiting reagent
Molar mass of Fe = 56 g/mol
Molar mass of H2O = 18 g/mol
# moles of Fe = mass of Fe/molar mass Fe = 354/56 = 6.321 moles
# moles of H2O = mass of h2O/molar mass of H2O = 839/18 = 46.611 moles
Since moles of Fe is less than H2O; Fe is the limiting reagent.
Step 2: Calculate moles of Fe3O4 formed
As per reaction stoichiometry:
3 moles of Fe form 1 mole of Fe3O4
Therefore, 6.321 moles of Fe = 6.321 * 1/ 3 = 2.107 moles of Fe3O4
Step 4: calculate the mass of Fe3O4 formed
Molar mass of Fe3O4 = 232 g/mol
# moles = 2.107 moles
Mass of Fe3O4 = moles * molar mass
= 2.107 moles * 232 g/mol = 488.8 g (489 g approx)