Answer:
15.04 mL
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 21 L
V₂ = ?
P₁ = 9 atm
P₂ = 15 atm
T₁ = 253 K
T₂ = 302 K
Using above equation as:
Solving for V₂ , we get:
<u>V₂ = 15.04 mL</u>
Saliva's buffering capacity and flow of secretion are directly related to the rate and extent of demineralization. ... Saliva can act as a replenishing source and inhibit tooth demineralization during periods of low pH, while promoting tooth remineralization when the pH returns to a neutral state.
Answer is: mass of unused sulfur is 5.87 grams.
Balanced chemical reaction: C + 2S → CS₂.
m(C) = 12.0 g; mass of carbon.
m(S) = 70.0 g; mass of sulfur.
n(C) = m(C) ÷ M(C).
n(C) = 12 g ÷ 12 g/mol.
n(C) = 1 mol; amount of substance.
n(S) = m(S) ÷ M(S).
n(S) = 70 g ÷ 32.065 g/mol.
n(S) = 2.183 mol.
From chemical reaction: n(C) : n₁(S) = 1 : 2.
n₁(S) = 1 mol · 2 = 2 mol.
Δn(S) = n(S) - n₁(S).
Δn(S) = 2.183 mol - 2 mol.
Δn(S) = 0.183 mol; amount of unused sulfur.
Δm(S) = 0.183 mol · 32.065 g/mol.
Δm(S) = 5.87 g.
The statements describe a spring at its equilibrium position is the elastic potential energy is zero, the displacement of the spring is at a maximum and the net force acting on the spring is zero.
<h3>What is the equilibrium position?</h3>
A body is in equilibrium when the sum of all forces acting on it equals zero. According to Newton's First Law, when resulting from the laws that act on a body that remains in a state of restriction or in motion in its motion, it remains uniformly null.
In this case the only statements that match the definition of equilibrium position are:
- The elastic potential energy is zero.
- The displacement of the spring is at a maximum.
- The net force acting on the spring is zero.
See more about equilibrium position at brainly.com/question/10374921
#SPJ1