Answer:
upper-left corner
Explanation:
Most vital information are positioned in a place where users can view them clearly and without obstruction.
Answer:
Explanation:
The motion of Mary along the circular path is a centripetal.
As Mary moves from one edge of the circular platform to the other edge, she is covering a distance which is the radius of the circular path at a velocity.
According to the relationship
w = v/r where
w is the angular velocity
r is the radius
v is the linear velocity
Initially, before Mary starts, her linear speed is zero and her angular velocity is also zero. As she move towards the opposite edge, she is covering a distance of radius r. According to the formula, increase in radius will leads to decrease in her angular velocity and vice versa. As Mary starts moving towards the centre of the circular path, her angular velocity increases, at the centre of the platform, her angular velocity is at maximum at this point. As she moves further from the center to the other edge, her angular velocity decreases due to increase in distance covered across the circular path.
Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
Answer:
B
Explanation:
The impulse experienced by an object is the force•time.
An animal is a lion, it may compete for food and it’s territory. The animal may have to fight other animals to get these things