-- If the work is done to make the object move faster, then
the work done becomes kinetic energy of the object.
-- If work is done on the object but it doesn't move any faster,
then there must be friction holding it back. In that case, the work
that's done just to keep the object moving becomes heat, in the
places where the friction acts on it.
costa rica does not have deserts hoped this helped and have a great day:)
Answer:
I don't think your appendix can explode because you ate too much honestly. It's not even possible to eat so much that your appendix explodes, and if you're feeling any pain it definitely isn't because your appendix is about to explode, believe me. Also you could just type it into the internet, that'd be a much faster solution.
Answer:
The electric current in the wire is 0.8 A
Explanation:
We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B= Magnetic field due to a straight and long wire that carries current
u= Free space permeability
I= Electrical current passing through the wire
a = Perpendicular distance from the wire to the point where the magnetic field is located
Magnetic Field Calculation
We cleared (I) of the formula (1):
Formula(2)

a =8cm=0.08m

We replace the known information in the formula (2)

I=0.8 A
Answer: The electric current in the wire is 0.8 A
Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m