Answer:
Explanation:
initial momentum = .36 kg.m.s⁻¹
negative impulse = force x time = .02 x 12 = .24 kg.m.s⁻¹
final momentum - initial momentum = impulse
final momentum = initial momentum + impulse
= .36 - .24
= .12 kg.m.s⁻¹
Good morning.
We see that

The magnitude(norm, to be precise) can be calculated the following way:

Now the calculus is trivial:
Answer: 39.8 μC
Explanation:
The magnitude of the electric field generated by a capacitor is given by:

d is the distance between the plates.
For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.

where A is the area of the plate and ε₀ is the absolute permittivity.
substituting, we get

It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.
radius of the plates of the capacitor, r = 69 cm = 0.69 m
Area of the plates, A = πr² = 1.5 m²
Thus, the maximum charge that can be placed on disks without a spark is:
Q = E×ε₀×A
⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.
Answer:
3.53*10^{-7} m
Explanation:
Photon that can rupture the bonds are those with the energy of the bond dissociation energy. If we want to know the energy for each molecule we have to take into account that:

Hence, we have

but the energy is also:

where h is the Planck's constant and c is the speed of ligth. By replacing we obtain:

hope this helps!