Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
a) 
b) 

Explanation:
Searching the missed information we have:
E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J
m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg
m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg
a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:
Linear momentum:


Since the plutonium nucleus is originally at rest,
:
(1)
Kinetic Energy:

(2)
By entering equation (1) into (2) we have:
Solving the above equation for
we have:

And by entering that value into equation (1):
The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.
b) Now, the kinetic energy of each nucleus is:
For He-4:

For U-235:

I hope it helps you!
Answer:
when you open a can of pop
when you jump on your bed
Explanation:
Answer: Quantum Theory
Explanation: His theory about the hydrogen atom based on quantum theory