Yes you do cause its more explanation to
<span />
Answer:
1.634 molL-1
Explanation:
The mol ration between NH3 and HCl is 1 : 1
Using Ca Va / Cb Vb = Na / Nb where a = acid and b = base
Na = 1
Nb = 1
Ca = 0.208 molL-1
Cb = ?
Va = 19.64 mL
Vb = 25.00mL
Solving for Cb
Cb = Ca Va / Vb
Cb = 0.208 * 19.64 / 25.0
Cb = 0.1634 molL-1 (Concentration of diluted ammonia solution)
Using the dilution equation;
C1V1 = C2V2
Initial Concentration, C1 = ?
Initial Volume, V1 = 25.00 mL
Final Volume, V2 = 250 mL
Final Concentration, C2 = 0.1634 molL-1
Solving for C1;
C1 = C2 * V2 / V1
C1 = 0.1634 * 250 / 25.00
C1 = 1.634 molL-1
Answer :
According to the law of conservation of mass, the mass of reactants must be equal to the mass of products.
The balanced chemical reaction is,

As we know that the molar mass of magnesium is 24 g/mole, the molar mass of
is 32 g/mole and the molar mass of magnesium oxide is 40 g/mole.
From the given balanced reaction, we conclude that
As, 1 mole of magnesium react
mole of oxygen to give 1 mole of magnesium oxide.
So, the mass of Mg is 24 g, the mass of
and the mass of MgO is 40 g.
That means 24 g of Mg react with 16 g
to give 40 g of MgO.
Answer:
Transition Element
Explanation:
Transition elements are defined as those elements which can form at least one stable ion and has partially filled d-orbitals. They are also characterized by forming complex compounds and having different oxidation states for a single metal element.
Transition metals are present between the metals and the non metals in the periodic table occupying groups from 3 to 12. There general electronic configuration is as follow,
(n-1)d
¹⁻¹⁰ns
¹⁻²
The general configuration shows that for a given metal, the d sublevel will be in lower energy level as compared to corresponding s sublevel. For example,
Scandium is present in fourth period hence, its s sublevel is present in 4rth energy level so its d sublevel will be present in 3rd energy level respectively.
Hence, we can conclude that for transition metals the electron are present in highest occupied s sublevel and a nearby d sublevel
.