This is false. Current is the speed of the charge, 1 amp of current is 1 coulomb per second. So you can imagine the current of a circuit as the current of a river. In a parallel circuit, the river breaks into two separate streams. Some of the water goes down one river, some goes down the other. However, the total amount of water/coulombs never changes. This means that some of the total current will go down one river, and one the other. However, with less coulombs now the current will decrease.
Long story short, since there are two paths, the charge will split and depending on the resistance of each parallel stream a different amount of charge will go down each branch.
<span>Epsilon
zero is permittivity of free space means how much air or vacuum permits
electric field to travel from one charge to other.It is constant in the coulomb
law. This allow Gauss's a lot easier to solve rather than using K</span>
Archaeologists use radioactive decay of an isotope of the element <u>carbon.</u> Because it has a fairly short half-life, and is found in anything that was once living.
<h3>What is radioactivity?</h3>
The act of producing radiation spontaneously is known as radioactivity. This is accomplished by an unstable atomic nucleus that want to give up some energy in order to move to a more stable form.
Archaeologists use radioactive decay of an isotope of the element <u>carbon.</u> Because it has a fairly short half-life, and is found in anything that was once living.
Hence, <u>carbon</u> is used the correct answer for the blank.
To learn more about the radioactivity, refer to the link;
brainly.com/question/1770619
#SPJ1
<span>The three major types of
symbiosis are mutualism, where both species benefit, commensalism, where
one species benefits and the other is unaffected, and parasitism, where
one species benefits and the other is harmed. Symbiotic relationships can occur within an organism's body or outside of it. </span><span>Examples of mutualism include the
relationship between single-celled organisms or animals that incorporate
algae into their bodies. They give the algae necessary nutrients, and
in return receive chemical energy from the photosynthetic algae. Animals
that have this sort of relationship include some sponges, sea anemones
and clams.
Examples of commensalism include remora fish attaching to the bodies
of sharks and eating scraps of food that escape their jaws, and
barnacles living on the jaws of whales with a similar feeding strategy.
Plants have commensal relationships as well, such as many orchids that
grow on taller plants and benefit from the additional sunlight they
obtain, without actually stealing nutrients from the host plant.
Parasitic relationships are many, and parasites include all
disease-causing organisms. This category also includes insects such as
fleas that suck the blood of hosts externally. Parasitism is a very
efficient strategy for organisms, and parasites often lose many of the
features of non-parasitic life forms, instead relying on their hosts for
many of the functions of life.</span>