Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
Magnitude of normal force acting on the block is 7 N
Explanation:
10N = 1.02kg
Mass of the block = m = 1.02 kg
Angle of incline Θ
= 30°
Normal force acting on the block = N
From the free body diagram,
N = mgCos Θ
N = (1.02)(9.81)Cos(30)
N = 8.66 N
Rounding off to nearest whole number,
N = 7 N
Magnitude of normal force acting on the block = 7 N
Explanation:
<em><u>Principle of Floatation</u></em>
Principle of Floatation states that weight of floating body is equal to weight of water displaced by it
Is there a equation or something so I can do the math of how many flowers there are at the end of the two monthsm
<u><em>Kinetic Energy Pulls Any object to the ground.This Energy is a part of Gravity.</em></u>
<u><em>Wish you happy timez!</em></u>