Quantum entanglement<span> is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the </span>quantum<span> state of each particle cannot be described independently — instead, a </span>quantum<span> state must be described for the system as a whole.</span>
Answer:
Explanation:
Let 100 m/s be the velocity of projection.
So horizontal component
= 100 cos42
= 74.31 m /s
Vertical component = - 100 sin 42 . in upward direction
66.91 m/s
Net displacement = 2.1 downwards ( + ve )
Using s = ut + 1/2 gt²
2.1 = - 66.91 t + .5 x 9.8 x t²
4.9 t² - 66.91 t - 2.1 = 0
t = 13.685 s
Horizontal distance covered
= 13.685 x 74.31
= 1016.93 m
If angle of projction is 40°
So horizontal component
= 100 cos40
= 76.60 m /s
Vertical component = - 100 sin 42 . in upward direction
64.27 m/s
Net displacement = 2.1 downwards ( + ve )
Using s = ut + 1/2 gt²
2.1 = -76.60 t + .5 x 9.8 x t²
4.9 t² - 76.60 t - 2.1 = 0
t = 15.659 s
Horizontal distance covered
= 15.659 x 76.60
= 1199.49 m
So horizontal range is increased , if angle of projection is increased .
A. False, because the SI unit for frequency is Hertz, 1 hertz equals 1 wave passing a fixed point in 1 second,
B. True, f and Nu (v)
C. To find the frequency of a wave, divide velocity of wave by wavelength
D. False, the period of a wave is measured in frequency (Hertz)
Potential energy E = mgh
m mass
g gravitational constant
mg = weight (in Newton)
h = height (in meter)