If velocity is decreasing, then acceleration is in the direction
opposite to the velocity.
If the object is moving in the direction that you call 'positive',
then acceleration is negative.
Answer:
10g
Explanation:
As the Law of Conservation of Mass states that " Mass can neither be created nor be destroyed in a chemical reaction".
Though melting of tin isn't a chemical change, the same logic is applied here...
Hence,
The mass of tin will be 10 g itself...
Answer:
For Xenon fluoride, the average bond energy is 132kj/mol
For tetraflouride,the average bond energy is 150.5kj/mol.
For hexaflouride, the average bond energy is 146.5 kj/mol
Explanation:
For xenon fluoride
105/2 = 52.5
For F-F
159/2 = 79.5
Average bond energy of Xe-F = 79.5 + 52.5 = 132kj/mole
For tetraflouride
284/4 = 71
For F-F
159/2 = 79.5
Average bond energy = 79.5 + 71 = 150.5kj/mol
For hexaflouride
402/6 = 67
F-F = 159/2 = 79.5
Average bond energy = 67 + 79.5 = 146.5kj/ mol
A 100 g cart is moving at 0.5 m/s that collides elastically from a stationary 180 g cart. Final velocity is calculated to be 0.25m/s.
Collision in which there is no net loss in kinetic energy in the system as a result of the collision is known as elastic collision . Momentum and kinetic energy both are conserved quantities in elastic collisions.
Collision in which part of the kinetic energy is changed to some other form of energy is inelastic collision.
For an elastic collision, we use the formula,
m₁V₁i+ m₂V₂i = m₁V1f + m₂V₂f
For a perfectly elastic collision, the final velocity of the 100g cart will each be 1/2 the velocity of the initial velocity of the moving cart.
Final velocity = 0.5/2
=0.25 m/s.
To know more about elastic collision, refer
brainly.com/question/7694106
#SPJ4
Answer:
B is the answer
Explanation:
thank you I hope it helps you