The atom is the most basic unit of matter
In 6 secs, the dog covers-
S=vt
8.9*6 = 53.4 m.
In the same time, the cat covers, 53.4-3.8 = 49.6 m.
Thus, speed of the cat, v= s/t,
= 49.6/6 = 8.267 m/s
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one
Before the engines fail
, the rocket's horizontal and vertical position in the air are
![x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t^2](https://tex.z-dn.net/?f=x%3D%5Cleft%28103%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Ccos53.0%5E%5Ccirc%5C%2Ct%2B%5Cdfrac12%5Cleft%2832.0%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5Ccos53.0%5E%5Ccirc%20t%5E2)
![y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t^2](https://tex.z-dn.net/?f=y%3D%5Cleft%28103%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Csin53.0%5E%5Ccirc%5C%2Ct%2B%5Cdfrac12%5Cleft%2832.0%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5Csin53.0%5E%5Ccirc%20t%5E2)
and its velocity vector has components
![v_x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t](https://tex.z-dn.net/?f=v_x%3D%5Cleft%28103%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Ccos53.0%5E%5Ccirc%2B%5Cleft%2832.0%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5Ccos53.0%5E%5Ccirc%20t)
![v_y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t](https://tex.z-dn.net/?f=v_y%3D%5Cleft%28103%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Csin53.0%5E%5Ccirc%2B%5Cleft%2832.0%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5Csin53.0%5E%5Ccirc%20t)
After
, its position is
![x=273\,\rm m](https://tex.z-dn.net/?f=x%3D273%5C%2C%5Crm%20m)
![y=362\,\rm m](https://tex.z-dn.net/?f=y%3D362%5C%2C%5Crm%20m)
and the rocket's velocity vector has horizontal and vertical components
![v_x=120\,\frac{\rm m}{\rm s}](https://tex.z-dn.net/?f=v_x%3D120%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D)
![v_y=159\,\frac{\rm m}{\rm s}](https://tex.z-dn.net/?f=v_y%3D159%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D)
After the engine failure
, the rocket is in freefall and its position is given by
![x=273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)t](https://tex.z-dn.net/?f=x%3D273%5C%2C%5Cmathrm%20m%2B%5Cleft%28120%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29t)
![y=362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2](https://tex.z-dn.net/?f=y%3D362%5C%2C%5Cmathrm%20m%2B%5Cleft%28159%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29t-%5Cdfrac%20g2t%5E2)
and its velocity vector's components are
![v_x=120\,\frac{\rm m}{\rm s}](https://tex.z-dn.net/?f=v_x%3D120%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D)
![v_y=159\,\frac{\rm m}{\rm s}-gt](https://tex.z-dn.net/?f=v_y%3D159%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D-gt)
where we take
.
a. The maximum altitude occurs at the point during which
:
![159\,\frac{\rm m}{\rm s}-gt=0\implies t=16.2\,\rm s](https://tex.z-dn.net/?f=159%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D-gt%3D0%5Cimplies%20t%3D16.2%5C%2C%5Crm%20s)
At this point, the rocket has an altitude of
![362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)(16.2\,\rm s)-\dfrac g2(16.2\,\rm s)^2=1650\,\rm m](https://tex.z-dn.net/?f=362%5C%2C%5Cmathrm%20m%2B%5Cleft%28159%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%2816.2%5C%2C%5Crm%20s%29-%5Cdfrac%20g2%2816.2%5C%2C%5Crm%20s%29%5E2%3D1650%5C%2C%5Crm%20m)
b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:
![362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=34.6\,\rm s](https://tex.z-dn.net/?f=362%5C%2C%5Cmathrm%20m%2B%5Cleft%28159%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29t-%5Cdfrac%20g2t%5E2%3D0%5Cimplies%20t%3D34.6%5C%2C%5Crm%20s)
So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:
![273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)(34.6\,\rm s)=4410\,\rm m](https://tex.z-dn.net/?f=273%5C%2C%5Cmathrm%20m%2B%5Cleft%28120%5C%2C%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%2834.6%5C%2C%5Crm%20s%29%3D4410%5C%2C%5Crm%20m)