Answer:
Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)
Explanation:
<em>Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of MgSO₃ and HI are mixed.</em>
When MgSO₃ reacts with HI they experience a double displacement reaction, in which the cations and anions of each compound are exchanged, forming H₂SO₃ and MgI₂. At the same time, H₂SO₃ tends to decompose to H₂O and SO₂. The complete molecular equation is:
MgSO₃(aq) + 2 HI(aq) ⇄ MgI₂(aq) + H₂O(l) + SO₂(g)
In the complete ionic equation, species with ionic bonds dissociate into ions.
Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)
Answer:
a molecule always has two or more atoms
Answer:
number of Al atom =54÷27=2atom of Al. number of o atom = 160÷16=10 atom of o . =214U MASS of ALO2.
Answer:
In doubling the concentration of the alkyl halide, the reaction rate also increases two-fold. However, doubling the concentration of the nucleophile does not in any way alter the reaction rate. Thus, the reaction rate is proportional only to the alkyl halide's concentration.
1 mole Hg ---------------- 6.02x10²³ atoms
?? ------------------------- 1.30 x10⁷ atoms
1.30x10⁷ x 1 / 6.02x10²³ =
= 1.30x10⁷ / 6.02x10²³ => 2.159x10⁻¹⁷ moles
hope this helps!