What you have to do is find a periodic table and add the mass of each atom that the compound is made of.
Ca= 40.1
O= 16.0
H= 1.01
keep in mind that you have to also account for how many atoms of each there are in the molecule. for example, in Ca(OH)2, there are one Ca, two O and two H
so the molar mass of Ca(OH)2= 40.1 + (2 x 16.0) + (2 x 1.01)= 74.12 g/mol
Answer:
The uranium in the sample of the compound is radioactive
Explanation:
Some atoms can split on their own. Some split when bombarded by energetic particles. Such atoms are said to be radioactive.
Radioactivity is borne out of the drive of an atom to reach stabillity. Every atom have a specific neutron/proton ratio which ensures stability of the nucleus. A nucleus with a stability ratio different from that which makes it stable will become unstable and split into one or more other nuclei with emissons of energetic particles.
Note: neutrons and protons dictates the mass of an atom. They are located in the nucleus which is the site for nuclear radioactive reactions.
Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
I’m pretty sure the answer is Barium. I hope it helps.
I think the correct answer from the choices listed above is option A. The structural level of a protein least affected by a disruption in hydrogen bonding is the primary level. The other levels are very much affected by hydrogen bonding. Hope this answers the question.