What did the protoplanets become?
a. nebulae
b. planets
c. solar nebulae
d. planetesimals
The protoplanets
become nebulae. The answer is letter A. The
rest of the choices do not answer the question above.
Answer:
Average acceleration on first part of the chunk is given as

Average acceleration on second part of the chunk is given as

Explanation:
By momentum conservation along x direction we will have

so we have


also by energy conservation






by solving above equation we will have


Average acceleration on first part of the chunk is given as


Average acceleration on second part of the chunk is given as


Answer: The principle of conservation of energy, angular speed and centripetal force
Explanation:
At point A, the car experienced maximum of potential energy
As it moves down the hill, the potential energy decreases while the kinetic energy increases.
The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .
Answer:
the force between the building and the ball is non-conservative (friction-type force)
Explanation
Explanation:For this exercise the student must create an impulse to move the ball towards the building, in this part he performs positive work since the applied force and the displacement are in the same direction.
When the ball moves it has a kinetic energy and if its height increases or decreases its potential energy also changes, but the sum of being must be equal to the initial work.
When the ball arrives and collides with the building, non-conservative forces, of various kinds; rubbing, breaking, etc. It transforms this energy into a part of heat and another in mechanical energy that the building must absorb, let us destroy its wall
Consequently, the force between the building and the ball is non-conservative (friction-type force
Answer:
Left to right and top to bottom
Explanation:
On the periodic table, the properties repeat from left to right and from top to bottom.
Periodic properties have a pattern from the top to the bottom or down a group or family.
Also, across the period from left to right, they also show a repeating pattern.
- Certain properties increase from left to right and decreases from top to bottom. E.g. electronegativity.
- Also, some properties decreases from left to right and increases from top to bottom e.g. atomic radius.