Answer:
The volume of water vapor increases.
Explanation:
Pressure, concentration, and temperature all affect the equilibrium position of chemical reactions in a closed system such as this one. Increasing HCl increases the pressure in the system. It favors the forward's reaction because this favors a reduced overall pressure in the system. The products have a combined 3 moles of gases while the reactants have a combined 5 moles of gases.
Neutron star: a newly formed neutron star can have a temperature of about 10^11 Kelvin to 10^12 Kelvin, but it can drop to 10^6 Kelvin. Its brightness is a million times fainter than the sun's brightness because of its size and distance from a point of view.
Dwarf star: Yellow dwarfs are small, main sequence star. <span>Red dwarfs are the most common type of star, </span>it's a small, cool, very faint, main sequence star whose surface temperature is under about 4,000 K.
Main sequence: has a temperature of about 10 million K. Its luminosity depends on the size and the mass of the star.
Red Giant: not normally as bright as the main sequence but it can create 1,000 to 10,000 times the luminosity that the sun gives off. The outer atmosphere is inflated, making the surface temperature to be as low as 5,000 K.
Supergiant: These stars have very "cool" surface temperatures that can range between 3500 and 4500 K (more or less). Depending on proximity, size, and mass, their luminosity can be either very high or very dim... though, they are normally very large stars.
Hope this helped!
Answer: Option (A) is the correct answer.
Explanation:
Atomic number of sodium is 11 and its electronic configuration is
.
In order to gain stability, sodium loses one electron and hence it forms a positive ion
.
Thus, we can conclude that when sodium combines with chlorine, it has a net charge of +1 because sodium loses a negative electron when forming chemical bonds.
It was due to the metal foil in which the alpha particles can't even pass through. This experiment conducted by Rutherford led to the discovery of protons.