Answer:
v = -1.8t+36
20 seconds
360 m
40 seconds
36 m/s
The object speed will increase when it is coming down from its highest height.
Explanation:

Differentiating with respect to time we get

a) Velocity of the object after t seconds is v = -1.8t+36
At the highest point v will be 0

b) The object will reach the highest point after 20 seconds

c) Highest point the object will reach is 360 m


d) Time taken to strike the ground would be 20+20 = 40 seconds
![[tex]v=u+at\\\Rightarrow v=0+0.9\times 2\times 20\\\Rightarrow v=36\ m/s](https://tex.z-dn.net/?f=%5Btex%5Dv%3Du%2Bat%5C%5C%5CRightarrow%20v%3D0%2B0.9%5Ctimes%202%5Ctimes%2020%5C%5C%5CRightarrow%20v%3D36%5C%20m%2Fs)
Acceleration will be taken as positive because the object is going down. Hence, the sign changes. 2 is multiplied because the expression is given in the form of 
e) The velocity with which the object strikes the ground will be 36 m/s
f) The speed will increase when the object has gone up and for 20 seconds and falls down for 20 seconds. The object speed will increase when it is coming down from its highest height.
Answer: question 1 is b I believe
Explanation:
every action has an opposite reaction
Magnets are attracted when each of the different sides, most commonly known as "North" and "South", are facing each other. They repel when North and North, or South and South are facing each other.
Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m