Answer:
1. In general, the best shields will be able to block a spectrum of radiation. Aboard the space station, the use of hydrogen-rich shielding such as polyethylene in the most frequently occupied locations, such as the sleeping quarters and the galley, has reduced the crew's exposure to space radiation.
2. It absorbs harmful ultraviolet radiation from the sun, helps keep Earth's surface warm via the greenhouse effect, and reduces temperature extremes between day and night. ... So, thanks to gravity, although some of Earth's atmosphere is escaping to space, most is staying here.
hope it helps. please mark me as brainliest and follow me ❤️
A dish shaped large muscle which moves up and down when there is contraction and expansion of lungs is the diaphragm which is present between the chest cavity and lower abdominal region. The action of the diaphragm is affected by an inflammation occurring below the muscular disc which will affect the process of breathing. The forceful breathing may result in strain and stress in the back muscles of the human body. This in turn causes pain in the shoulder.
Answer:
Explanation:
El 15 de febrero de 1564 nacía Galileo Galilei (1564-1642). Galileo Galilei es una de las figuras claves de la historia de la Ciencia, pudiéndosele considerar el primero que aplicó el método científico experimental-matemático.
Yes because if not people wouldn't understand how did you calculate electric field strength.
Answer:
<em>Explanation below</em>
Explanation:
<u>Speed vs Velocity
</u>
These are two similar physical concepts. They only differ in the fact that the velocity is vectorial, i.e. having magnitude and direction, and the speed is scalar, just the magnitude regardless of the direction. They are strongly related to the concepts of displacement and distance, which are the vectorial and scalar versions of the space traveled by a moving object. The velocity can be computed as

Where
is the position vector and t is the time. The speed is

To compute
, we only need to know the initial and final positions and subtract them. To compute d, we need to add all the distances traveled by the object, regardless of their directions.
Maggie walks to a friend's house, located 1500 meters from her place. The initial position is 0 and the final position is 1500 m. The displacement is

and the velocity is

Now, we know Maggie had to make three different turns of direction to finally get there. This means her distance is more than 1500 m. Let's say she walked 500 m in all the turns, then the distance is

If she took the same time to reach her destiny, she would have to run faster, because her average speed is
