Answer:
maybe, but id rather do automotive stuff, thats my second option.
Explanation:
<span>The addition and subtraction of negatively charged electrons can easily change an atom’s charge, because they perpetually spin in valence shells outside the nucleus. It is easier for a neighboring atom to share or steal an electron rather than a positively charged proton, which is found in the nucleus. It requires a strong energy input to split a proton free from other protons and neutrons. thus, the atoms lose or gain electrons from neighboring ones and become what is known as "ions". Hope it helped!</span>
Answer:
B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
Explanation:
Hello,
In this case, we should understand oxidizing agents as those substances able to increase the oxidation state of another substance, therefore, in B. reaction we notice that copper oxidation state at the beginning is zero (no bonds are formed) and once it reacts with nitric acid, its oxidation states raises to +2 in copper (II) nitrate, thus, in B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2 nitritc acid is acting as the oxidizing agent.
Moreover, in the other reactions, copper (A.), sodium (C. and D.) remain with the same initial oxidation state, +2 and +1 respectively.
Regards.
Answer : The equilibrium constant for this reaction is, 
Explanation :
The given main chemical reaction is:
; 
The intermediate reactions are:
(1)
; 
(2)
; 
We are reversing reaction 1 and multiplying reaction 2 by 2 and then adding both reaction, we get:
(1)
; 
(2)
; 
Thus, the equilibrium constant for this reaction will be:


Thus, the equilibrium constant for this reaction is, 