<u>Momentum</u>
- a vector quantity; has both magnitude and direction
- has the same direction as object's velocity
- can be represented by components x & y.
Find linebacker momentum given m₁ = 120kg, v₁ = 8.6 m/s north
P₁ = m₁v₁
P₁ = (120)(8.6)
[ P₁ = 1032 kg·m/s ] = y-component, linebacker momentum
Find halfback momentum given m₂ = 75kg, v₂ = 7.4 m/s east
P₂ = m₂v₂
P₂ = (75)(7.4)
[ P₂ = 555 kg·m/s ] = x-component, halfback momentum
Find total momentum using x and y components.
P = √(P₁)² + (P₂)²
P = √(1032)² + (555)²
[[ P = 1171.77 kg·m/s ]] = magnitude
!! Finally, to find the magnitude of velocity, take the divide magnitude of momentum by the total mass of the players.
P = mv
P = (m₁ + m₂)v
1171.77 = (120 + 75)v <em>[solve for v]</em>
<em />v = 1171.77/195
v = 6.0091 ≈ 6.0 m/s
If asked to find direction, take inverse tan of x and y components.
tanθ = (y/x)
θ = tan⁻¹(1032/555)
[ θ = 61.73° north of east. ]
The magnitude of the velocity at which the two players move together immediately after the collision is approximately 6.0 m/s.
Answer:
A lateral eruptions or lateral blast is a volcanic eruption which is directed laterally from a volcano rather than upwards from the summit. Lateral eruptions are caused by the outward expansion of flanks due to rising magma. Breaking occurs at the flanks of volcanoes making it easier for magma to flow outward.
Explanation:
Answer:
The average net force on the truck is 375 Newtons.
Explanation:
Using Newton's 3rd equation of motion, we have :
×a×s
where, v = final velocity = 25 m/s
u = initial velocity = 20 m/s
a = acceleration
s = distance traveled = 300 m
Using these values in the above equation, we get acceleration = 0.375 m/
Using Newton's second law, we have:
F=m×a
where m = mass = 1000 kg
a= acceleration = 0.375 m/
Putting values we have F=375 N
Explanation:
63 kg ice skater finishes her performance and crossed the finish line with a speed of 10.8 m/s