At the anode, half-cell oxidation occurs in a voltaic cell.
<h3>Voltaic Cell Principle</h3>
A voltaic cell generates electricity due to the Gibbs free energy of spontaneous redox processes occurring inside the cell, which is the basis for the voltaic cell's operating principle.
Two half-cells plus a salt bridge make up the voltaic cell. An electrolyte-immersed metallic electrode is present on each side of the cell. These two half-cells are wired together to form a connection to a voltmeter.
<h3>Voltaic Cell Parts</h3>
- Copper makes comprises the cathode of a photovoltaic cell. This electrode serves as the cell's positive terminal, where reduction takes place.
- Anode: Zink metal makes up this electrode. It creates the cell's negative electrode, where oxidation takes place.
- Oxidation and reduction are divided into two discrete parts in two half-cells.
- Salt Bridge: It contains the electrolytes needed to finish the circuit in the voltaic cell.
- The flow of electrons between the electrodes occurs via the external circuit.
Learn more about Voltaic cells here:-
brainly.com/question/27908270
#SPJ4
Answer:
Find it in the teacher desk by tomorrow 7:30
Explanation:
Answer:
- <em>Hydration number:</em> 4
Explanation:
<u>1) Mass of water in the hydrated compound</u>
Mass of water = Mass of the hydrated sample - mass of the dehydrated compound
Mass of water = 30.7 g - 22.9 g = 7.8 g
<u>2) Number of moles of water</u>
- Number of moles = mass in grams / molar mass
- molar mass of H₂O = 2×1.008 g/mol + 15.999 g*mol = 18.015 g/mol
- Number of moles of H₂O = 7.9 g / 18.015 g/mol = 0.439 mol
<u>3) Number of moles of Strontium nitrate dehydrated, Sr (NO₃)₂</u>
- The mass of strontium nitrate dehydrated is the constant mass obtained after heating = 22.9 g
- Molar mass of Sr (NO₃)₂ : 211.63 g/mol (you can obtain it from a internet or calculate using the atomic masses of each element from a periodic table).
- Number of moles of Sr (NO₃)₂ = 22.9 g / 211.63 g/mol = 0.108 mol
<u>4) Ratio</u>
- 0.439 mol H₂O / 0.108 mol Sr(NO₃)₂ ≈ 4 mol H₂O : 1 mol Sr (NO₃)₂
Which means that the hydration number is 4.
Answer:
746 moles of H2O are been produced from 373 moles of Al.
Explanation:
For every 3 moles of aluminum, you get 6 moles of H2O (double). Therefore, every 373 moles of Al, you will get double as well, that is 746 m.
The violet light is the answer!