Answer:
a. 32.67 rad/s² b. 29.4 m/s²
Explanation:
a. The initial angular acceleration of the rod
Since torque τ = Iα = WL (since the weight of the rod W is the only force acting on the rod , so it gives it a torque, τ at distance L from the pivot )where I = rotational inertia of uniform rod about pivot = mL²/3 (moment of inertia about an axis through one end of the rod), α = initial angular acceleration, W = weight of rod = mg where m = mass of rod = 1.8 kg and g = acceleration due to gravity = 9.8 m/s² and L = length of rod = 90 cm = 0.9 m.
So, Iα = WL
mL²α/3 = mgL
dividing through by mL, we have
Lα/3 = g
multiplying both sides by 3, we have
Lα = 3g
dividing both sides by L, we have
α = 3g/L
Substituting the values of the variables, we have
α = 3g/L
= 3 × 9.8 m/s²/0.9 m
= 29.4/0.9 rad/s²
= 32.67 rad/s²
b. The initial linear acceleration of the right end of the rod?
The linear acceleration at the initial point is tangential, so a = Lα = 0.9 m × 32.67 rad/s² = 29.4 m/s²
answer
so unit of velocity is m/s
displacement=600m
5minutes should be converted to seconds
5×60=300 seconds
so,
velocity= displacement÷time
= 600m ÷300s
=2m/s or 2ms^-1
When a liquid changes to gas, this phase change is called vaporization or evaporization.
The answer of a & b are force of cohesion and force of adhesion
Of rest two answers I don't know
Answer:
The answer is C.
Explanation:
Every point mass attracts every single other point mass by a force acting along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them. In magnitude, the force they apply each other is the same. Therefore, the force that the windshield exerts on the bug and the force that the bug exerts on the windshield are the same magnitude.