Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.
Hydrosphere - all the waters on the earth’s surface.
Answer:
E = 10⁵ J
Explanation:
given,
Power, P = 100 TW
= 100 x 10¹² W
time, t = 1 ns
= 1 x 10⁻⁹ s
The energy of a single pulse is:-
Energy = Power x time
E = P t
E = 100 x 10¹² x 1 x 10⁻⁹
E = 10⁵ J
The energy contained in a single pulse is equal to 10⁵ J
Answer:
a) T=1.35s
b) amplitude = 0.0923m
Explanation:
m=300 gr
k=6.5 N/m
first we need to get the angular frequency of the motion
so we have that
ω = √(k/m)
in this case motion is a simple harmonic so the period is defined by:
T= 2π / ω
T= 2π / √(k/m)
replacing the variables...
T= 2π / √(6.5/0.3)
T=1.35s (period of the block's motion)
and...
α max = | ω²r max |
2 = (2π/1.35)² * r max
r max= 0.0923m
0.495 m/s
Explanation
the formula for the terminal velocity is given by:
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
then
Step 1
Let's find the mass
now, replace
hence, the answer is 0.495 m/s