Answer:
the correct answer is A
Explanation:
In an Einstein-type analysis, the photon is absorbed, it loses all its energy, therefore the electron must receive all or none of the energy of the incident photon. In a type of inelastic shock.
Let's analyze the different answers
A) true. In photon it is completely absorbed or passes without interaction
B) False. The photon must change energy, but in this case there is no absorption of the photon
C) False. In the insistent analyzes, the quantization of the electron in discrete states is not mentioned.
Therefore the correct answer is A
The addition of 24 kJ of energy will allow all of the mercury and lead to change from solid to liquid. The temperature of each substance will also increase.
The word "Per" means divide
"miles per gallon" is the same as "miles / gallon"
The truck went 1,200 miles
on 55 gallons
1,200 ÷ 55 = 21.81
Answer:
The speed of water must be expelled at 6.06 m/s
Explanation:
Neglecting any drag effects of the surrounding water we can assume the linear momentum in this case is conserves, that is, the total initial momentum of the octopus and the water kept in it cavity should be equal to the total final linear momentum. That's known as conservation of momentum, mathematically expressed as:

with Pi the total initial momentum and Pf the final total momentum. The total momentum is the sum of the momentums of the individual objects, in our case the octopus and the mass of water that will be expelled:

with Po the momentum of the octopus and Pw the momentum of expelled water. Linear momentum is defined as mass times velocity:

Note that initially the octopus has the water in its cavity and both are at rest before it sees the predator so
:

We should find the final velocity of water if the final velocity of the octopus is 2.70 m/s, solving for
:


The minus sign indicates the velocity of the water is opposite the velocity of the octopus.
Answer:
Mixtures are materials that contain two or more chemical substances dispersed among each other (mixed together). If no chemical reaction occurs when two materials are mixed, they form a mixture. The chemical properties of the components don't change.
Explanation: