As the first astronaut throws the ball, lets assume it goes with v velocity and the mass of the ball be m
the momentum comes out be mv, thus to conserve that momentum the astronaut will move opposite to the direction of the ball's motion with the velocity mv/M (where M is the mass of the astronaut).
<h3>Newtons first law state that if a body is in motion it will be in motion and if a body is in rest it will tend to be in rest. This phenomena is also called INERTIA. Example: We tend to fall sideways when a car turn suddenly</h3>
More info? I think the question is incomplete. Although, I believe the first 2 blanks are "rises"
Answer:
The total frictional force is 358.0 newtons
Explanation:
Power is the amount of average work (W) an object does on a period of time (Δt):

Remember average work is average force (F) times displacement (Δs):

but displacement over time is average speed
, then:
(1)
That is, the power of the car is the force the engine does times the speed of the car. As the question states, if the car is at constant velocity then the power developed is used to overcome the frictional forces exerted by the air and the road, that is by Newton's first law, the force the motor of the car does is equal the force of frictional forces. So, to find the frictional forces we only have to solve (1) for F:

Knowing that 1hp is 746W then 30hp=22380W and 1 mile = 1609m then 140 mph = 225308
=
, then:
