The two subatomic particles that contribute to the net charge of an ion are electrons and protons.
<h3>What is an atom?</h3>
Atom is the smallest possible amount of matter which still retains its identity as a chemical element, now known to consist of a nucleus surrounded by electrons.
The atom is made up of three components called subatomic particles as follows;
The proton is the positively charged subatomic particle forming part of the nucleus of an atomwhile the electron is the subatomic particle having a negative charge and orbiting the nucleus.
This suggests that the two subatomic particles that contribute to the net charge of an ion are electrons and protons. That is;
Net charge = protons - electrons
Learn more about subatomic particles at:brainly.com/question/13303285
#SPJ1
Answer:
The the analysis for the free fall part should be done under the constant acceleration.
Explanation:
In the given problem, the jumper is falling under the free fall. Since, no external force is acting on the body therefore, the fall will be under the action gravity only. also, the acceleration due to gravity is always constant.
Therefore, the the analysis for the free fall part should be done under the constant acceleration.
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s
<h2>Answer</h2>
The force will be doubled.
<h2>Explanation</h2>
Using Newton Law II,
<h3>F = ma </h3>
So it can be seen in the formula that force is directly proportional to mass and acceleration.
if mass is doubled ---> force will be doubled, keeping acceleration constant.
Similarly,
if acceleration is doubled ---? force is will be doubled, keeping mass constant.
<em>It is assumed that there is no friction, the object is in the air with no air resistance.</em>
<em />