Answer:
the concentration of PCl5 in the equilibrium mixture = 296.20M
Explanation:
The concept of equilibrium constant was applied where the equilibrium constant is the ration of the concentration of the product over the concentration of the reactants raised to the power of their coefficients. it can be in terms of concentration in M or in terms of Pressure in atm.
The detaied steps is as shown in the attached file.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
Reduction reaction is defined as the reaction in which a substance gains electrons. Here, the oxidation state of the substance decreases.

Oxidizing agents are the agents that helps in the oxidation of other substance and itself gets reduced. These agents undergoes reduction reactions.
Oxidation reaction is defined as the reaction in which a substance looses its electrons. Here, oxidation state of the substance increases.

Reducing agents are the agents that helps in the reduction of the other substance and itself gets oxidized. These agents undergoes reduction reactions.
Oxidation state is the number which is given to an atom when it looses or gains electron. It is written as a superscript. In a compound, the total charge is equal to the sum of the charges of all atoms in that compound. <u>For Example:</u> In
, manganese has +7 oxidation number and oxygen has -2.
So, the charge on the compound = ![[=7+(4\times (-2))]=-1](https://tex.z-dn.net/?f=%5B%3D7%2B%284%5Ctimes%20%28-2%29%29%5D%3D-1)
Hence, the correct answer is Option D.
M1 = 17.45 M
M2 = 0.83 M
V2 = 250 ml
M1. V1= M2. V2
V1 = (M2. V2)/M1 = (0.83× 250)/ 17.45= 11.89 ml
Answer:
146 g
Explanation:
Step 1. Calculate the <em>molar mass</em> of NaNO₃
Na = 22.99
N = 14.01
3O = 3 × 16.00 = 48.00
Total = 85.00 g/mol
Step 2. Calculate the <em>mass</em> of NaNO₃
Mass of NaNO₃ = 1.72 × 85.00/1
Mass of NaNO₃ = 146 g
The notion <span>an empty balloon have precisely the same apparent weight on a scale as a balloon filled with air depends on the diameter of the balloon. The weight of the balloon filled with air is equal to the mass of the balloon and the mass of the air inside. The mass of air inside is equal to the density of air multiplied by the volume of the balloon. If the balloon is large, then the two masses are equal whereas if not, the mass of air inside the inflation is neglible</span>