1) in periodic acid (HIO₄), iodine has oxidation number +7, hydrogen has oxidation number +1, oxygen has -2, compound has neutral charge:
+1 + x + 4 · (-2) = 0.
x = +7.
2) in molecule of iodine (I₂), iodine has oxidation number 0, because iodine is nonpolar molecule.
3) in sodium iodide (NaI), iodine has oxidation number -1, sodium has oxidation number +1:
+1 + x = 0.
x = -1.
4) in iodic acid (HIO₃), iodine has oxidation number +5, hydrogen has oxidation number +1, oxygen has -2, compound has neutral charge:
+1 + x + 3 · (-2) = 0.
x = +5.
Answer:
The volume of NaOH required is - 0.01 L
Explanation:
At equivalence point
,
Moles of
= Moles of NaOH
Considering
:-
Given that:
So,
<u>The volume of NaOH required is - 0.01 L</u>
H. using a pulley system can reduce the load force, over a greater distance.<span />
Answer:
hypochlorite ion
Explanation:
The hypochlorous acid, HClO, is a weak acid with Ka = 1.36x10⁻³, when this acid is in solution with its conjugate base, ClO⁻ (From sodium hypochlorite, NaClO) a buffer is produced. When a strong acid as HCl is added, the reaction that occurs is:
HCl + ClO⁻ → HClO + Cl⁻.
Where more hypochlorous acid is produced.
That means, the HCl reacts with the hypochlorite ion present in solution
Answer:
-1.05 V
Explanation:
A detailed diagram of the setup as required in the question is shown in the image attached to this answer. The electrolytes chosen are SnCl2 for the anode half cell and MnCl2 for the cathode half cell. Tin rod and manganese rod are used as the anode and cathode materials respectively. Electrons flow from anode to cathode as indicated. The battery connected to the set up drives this non spontaneous electrolytic process.
Oxidation half equation;
Sn(s) ------> Sn^2+(aq) + 2e
Reduction half equation:
Mn^2+(aq) + 2e ----> Mn(s)
Cell voltage= E°cathode - E°anode
E°cathode= -1.19V
E°anode= -0.14 V
Cell voltage= -1.19 V - (-0.14V)
Cell voltage= -1.05 V