Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
We can observe physical properties of elements and compounds without changing the substance.
Examples of physical properties: Density, color, boiling point, state of matter, appearance: dull or shiny, etc.
But we can also observe and measure chemical properties by reacting a substance with something else. For example, like mixing baking soda and vinegar together. The vinegar reacts with the baking soda and produces carbon dioxide: a new substance.
Some examples of chemical properties: Flammability, amount of heat that is released during combustion, toxicity (how much damage it causes to other organisms), radioactivity, and ability to oxidize (when you have metal that becomes rusty looking).
Answer: Nothing
Explanation:
Cobalt-60 emits γ radiation and is used in many applications including cancer treatment: There is no change in mass number or atomic number during the emission of a γ ray unless the γ emission accompanies one of the other modes of decay.
Answer:
C₅ H₁₂ O
Explanation:
44 g of CO₂ contains 12 g of C
30.2 g of CO₂ will contain 12 x 30.2 / 44 = 8.236 g of C .
18 g of H₂O contains 2 g of hydrogen
14.8 g of H₂0 will contain 1.644 g of H .
total compound = 12.1 out of which 8.236 g is C and 1.644 g is H , rest will be O
gram of O = 2.22
moles of C, O, H in the given compound = 8.236 / 12 , 2.22 / 16 , 1.644 / 1
= .6863 , .13875 , 1.644
ratio of their moles = 4.946 : 1 : 11.84
rounding off to digits
ratio = 5 : 1 : 12
empirical formula = C₅ H₁₂ O