16.94/18=.9411111
sig figs: 0.9411 mole of water
A. an ion
The atom gains a net electrical charge if the number of protons and electrons are not equal which makes it an ion.
Taking into account the definition of density, assuming all other conditions remain the same, increasing mass will cause an object's density to increase.
Density is defined as the property that matter, whether solid, liquid or gas, has to compress into a given space. That is, density is a quantity referred to the amount of mass contained in a given volume.
Density is an intensive property since it does not vary with the amount of substance.
Since density is the relationship between the mass and the volume of a substance, its calculation is defined as the quotient between the mass of a body and the volume it occupies:

In the previous expression it can be observed that the density is inversely proportional to the volume: the smaller the volume occupied by a certain mass, the greater the density.
On the other hand, density is directly proportional to mass: the greater the mass, the greater the density.
Finally, assuming all other conditions remain the same, increasing mass will cause an object's density to increase.
Learn more about density:
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133