Molarity is defined as the ratio of number of moles to the volume of solution in litres.
The mathematical expression is given as:

Here, molarity is equal to 1.43 M and volume is equal to 785 mL.
Convert mL into L
As, 1 mL = 0.001 L
Thus, volume =
= 0.785 L
Rearrange the formula of molarity in terms of number of moles:

n = 
= 1.12255 mole
Now, Number of moles = 
Molar mass of potassium hydroxide = 56.10 g/mol
1.12255 mole = 
mass in g =
= 62.97 g
Hence, mass of
= 62.97 g
Number of moles = mass of product / molecular mass
=mass of product (MgO) / 40.3
Since the mass of MgO is not given in the question, the correct answer choice cannot be given. However, proceeding witht eh above formula will enable you to find the correct number of moles given the mass of MgO.
Nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷
<h2>Hey There!</h2><h2>_____________________________________</h2><h2>Answer:</h2>

<h2>_____________________________________</h2><h2>CALORIMETER:</h2>
Calorimeter is device used for the measurement of heat. In a calorimeter we can use the temperature change of water to quantify an amount of heat. A calorimeter just captures all the energy released (or absorbed) by a reaction in the water. So Option A and B are wrong as calorimeter don't have anything to do with providing the heat or letting the the heat in, as it is the insulated calorimeter too.
<h2>_____________________________________</h2><h2>Energy in the reaction:</h2>
In the formation of any bond there is equal amount of heat required as to break that bond. It means Energy released in the making of bond is equal to the energy required in the breaking of the bond. So Option D is wrong as it says we need more energy in making then breaking.
<h2>_____________________________________</h2><h2>Enthalpy:</h2>
Enthalpy is the total heat content of the system. As we provide energy to the reactants and the product is formed, so The enthalpy(heat content) of product is more than the Enthalpy of the reactant, Thus Option C is correct.
Enthalpy is denoted by H or Q, its formula is,
H = U + PV
Where,
U is internal energy
PV is equals to Work done ; P = Pressure, V = Volume
<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2><h2> </h2>
What is the empirical formula for ribose (C5H10O5)?
C. CH20