Nanochemicals can be defined as chemicals generated by using nanomaterials (materials that possess of size on nanometer dimensions). The nanochemicals are used in multiple different applications including chemical warfare, bicycle making, armor design and military weapons crafting. The most commonly used and observed nanochemicals are carbon nanotubes that are used a ton in industry for applications such as stronger materials (stronger bicycles).
Smart materials are exquisitely designed materials whose property(ies) can be modified with the use of an external stimulus such as temperature, stress, pH, and so on. Some examples of smart materials include shape memory materials, piezoelectric materials, ferrofluids, self-healing materials, and such. Applications involve memory pillows, memory based solar panels (for satellites), light sensitive glasses, and so on.
Specialized materials are made specifically to perform a specified task or function. Applications involve electronic equipment (high purity silicon & germanium), machine tools (high tungsten high carbon steel), dental filling (dental amalgam), and so on.
Answer:
The atomic number of an atom is the number of protons in the nucleus or the number of electrons in a neutral atom
Explanation:
The direction<span> of </span>the momentum<span> is the </span>same<span> as the </span>direction<span> of the velocity of the ball. </span>
Answer is: chemical.
Making a pancake from batter is chemical change (chemical reaction), because new substances are formed, the atoms are rearranged and the reaction is followed by an energy change.
Batter is thin dough that is poured into a pan to make pancakes.
In physical change, the same substance is present before and after the psysical change, just with different form or state of matter.
Answer : The value of rate of reaction is 
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:

Rate law expression for the reaction is:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
As per question,
a = order with respect to
= 2
b = order with respect to
= 1
Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant = 
[NO] = concentration of NO = 
= concentration of
= 
Now put all the given values in the above expression, we get:


Hence, the value of rate of reaction is 