Isotopes are variants atoms of the same element, having same number of atomic(proton) number but different number of neutrons and mass number.
Considering iron-60
- The atomic number which also equals the number of protons for the element iron as can be seen on the periodic table is 26
- The name iron-60 also tells us that this particlar isotope's mass number is 60.
- The chemical symbol for Iron is Fe
Now expressing as an isotope iron-60 becomes ⁶⁰₂₆Fe ( very unstable )
Other stable isotopes of Iron include ⁵⁴₂₆Fe , ⁵⁶₂₆Fe, ⁵⁷₂₆Fe and ⁵⁸₂₆Fe
See more here: brainly.com/question/11236150
Answer:
the waves have a trough
Explanation:
just took the test on edg.
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.
Thomson's model included Protons and Electrons. His model is referred to as 'Plum Pudding' because of it.
Answer:
3.01 × 10²⁴ atoms S
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
5.00 mol S
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁴ atoms S
<u />
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁴ atoms S ≈ 3.01 × 10²⁴ atoms S