Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer:
Step 1: The Unbalanced Chemical Equation. The unbalanced chemical equation is given to you. ...
Step 2: Make a List. ...
Step 3: Identifying the Atoms in Each Element. ...
Step 4: Multiplying the Number of Atoms. ...
Step 5: Placing Coefficients in Front of Molecules. ...
Step 6: Check Equation. ...
Step 7: Balanced Chemical Equation.
Explanation:
Answer: B. photosynthesis
Explanation: Glucose and oxygen react together in plant cells to produce energy.