The answer for the following problem is mentioned below.
- <u><em>Therefore the final temperature of the gas is 740 K</em></u>
Explanation:
Given:
Initial pressure of the gas (
) = 1.8 atm
Final pressure of the gas (
) = 4 atm
Initial temperature of the gas (
) = 60°C = 60 + 273 = 333 K
To solve:
Final temperature of the gas (
)
We know;
From the ideal gas equation;
we know;
P × V = n × R × T
So;
we can tell from the above equation;
<u> P ∝ T</u>
(i.e.)
<em> </em>
<em> = constant</em>
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
=
= 740 K
<u><em>Therefore the final temperature of the gas is 740 K</em></u>
Physical science , earth science,and life science are the branches of natural science
The answer is D. His belief is was that atoms could not be split. That is what was disproved really fast ;)
<h2>
Answer: 6 moles</h2>
<h3>
Explanation:</h3>
3 H₂ + N₂ → 2 NH₃
↓ ↓
4 mol 3 mol
Since the moles of N₂ is the smaller of the two reactants, then N₂ is the limiting factor (the reactant that will decide how much ammonia is produced since it has the smaller amount of moles). ∴ we have to use it in calculating the number of moles of ammonia
The mole ratio of N₂ to NH₃ based on the balanced equation is 1 to 2.
∴ the moles of NH₃ = moles of N₂ × 2
= 3 moles × 2
= 6 moles
Answer:
The equation to show the the correct form to show the standard molar enthalpy of formation:

Explanation:
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states.
Given, that 1 mole of
gas and 1 mole of
liquid gives 2 moles of HBr gas as a product.The reaction releases 72.58 kJ of heat.

Divide the equation by 2.

The equation to show the the correct form to show the standard molar enthalpy of formation:
