Answer:
3-³ x (1/3)^-5 x (1/3)-²
Applying Indices
3^-3 x (3-¹)^-5 x (3-¹)^-2
When the negative signs interact
they become positive
We now have
3^-3 x 3^5 x 3^2
= 3^-3 x 3^7
=3⁴.
Answer : The partial pressure of
is, 222.93 torr
Explanation :
Half-life = 2.81 hr = 168.6 min
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the partial pressure of 
The balanced chemical reaction is:

Initial pressure 760 0 0
At eqm. (760-2x) 4x x
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 215 min
a = initial pressure of
= 760 torr
a - x = pressure of
at equilibrium = (760-2x) torr
Now put all the given values in above equation, we get:


The partial pressure of
= x = 222.93 torr
Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.
Answer: Air
Hope this helps