1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
13

Which best explains how an object at rest deep in space and far from any massive body behaves compared to an object in free fall

in Earth’s gravitational field?
They behave differently because, according to the principle of equivalence, the laws of physics depend on frames of reference.
They behave differently because, according to gravitational redshift, the laws of physics depend on frames of reference.
They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
They behave the same because, according to gravitational redshift, the laws of physics work the same in all frames of reference.
Physics
1 answer:
7nadin3 [17]3 years ago
3 0

Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.

Explanation:

According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.

To understand it better, regarding to the equivalence principle, Einstein formulated the following:  

A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects.  Because the laws of physics must be accomplished in all frames of reference.

Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect.  This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.

You might be interested in
La luz roja visible tiene una longitud de onda de 680 nanómetros (6,8 x 10-7 m). La velocidad de la luz es de 3.0 x108 m / s. ¿C
Lina20 [59]

Answer:

Frequency, f=4.41\times 10^{14}\ Hz

Explanation:

Visible red light has a wavelength of 680 nanometers (6.8 x 10⁻⁷ m). The speed of light is 3.0 x 10 ⁸ m / s. What is the frequency of visible red light?

It is given that,

Wavelength of a visible red light is, \lambda=6.8\times 10^{-7}\ m

Speed of light is, c=3\times 10^8\ m/s

We need to find the frequency of visible red light. It can be calculated using below relation.

c=f\lambda\\\\f=\dfrac{c}{\lambda}\\\\f=\dfrac{3\times 10^8}{6.8\times 10^{-7}}\\\\f=4.41\times 10^{14}\ Hz

So, the frequency of visible red light is 4.41\times 10^{14}\ Hz.

3 0
3 years ago
a uniform rod is hung at onen end and is partially submerged in water. If the density of the rod is 5/9 than of wter, find the f
34kurt

Answer:

    \frac{h_{liquid} }{ h_{body} } = 5/9

Explanation:

This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.

         B = ρ_liquid  g V_liquid

let's write the translational equilibrium condition

         B - W = 0

let's use the definition of density

        ρ_body = m / V_body

        m = ρ_body  V_body

        W = ρ_body  V_body  g

we substitute

          ρ_liquid  g  V_liquid = ρ_body  g  V_body

          \frac{\rho_{body}   }{\rho_{liquid} } } =  \frac{V_{liquid}   }{V_{body} } }

In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar

          V = A h_bogy

Thus

          \frac{V_{liquid} }{V_{1body} } = \frac{ h_{liquid} }{h_{body} }

we substitute

           5/9 = \frac{h_{liquid} }{ h_{body} }

8 0
2 years ago
A piece of copper wire with thin insulation, 200 m long and 1.00 mm in diameter, is wound onto a plastic tube to form a long sol
bearhunter [10]

Answer:

 N= 3

Explanation:

For this exercise we must use Faraday's law

          E = - dФ / dt

         Ф = B . A = B Acos θ

tje bold indicate vectors. As it indicates that the variation of the field is linear, we can approximate the derivatives

         E = - A cos θ (B - B₀) / t

The angle enters the magnetic field and the normal to the area is zero

         cos 0 = 1

         A = π r²

   

In the length of the wire there are N turns each with a length L₀ = 2π r

          L = N (2π r)

          r = L / 2π N

    we substitute

          A = L² / (4π N²)

The magnetic field produced by a solenoid is

           B = μ₀ N/L   I

for which

            B₀ = μ₀  N/L   I

           

The final field is zero, because the current is zero

            B = 0

We substitute

           E = - (L² / 4π N²)  (0 - μ₀ N/L I) / t

           E = μ₀ L I / (4π N t)

           N = μ₀ L I / (4π t E)

The electromotive force is E = 0.80 mV = 0.8 10⁻³ V

let's calculate

           N = 4π 10⁻⁷ 200 1.60 / (4π 0.120 0.8 10⁻³)]

           N  = 320 10⁻⁷ / 9.6 10⁻⁶

           N = 33.3 10⁻¹

          N= 3

           

7 0
3 years ago
Which is an example of qualitative data?
LiRa [457]
The answer is C)the rating that the golfers give Callaway clubs
6 0
2 years ago
What does a trench form?What happens here?
Vinvika [58]
A hole, and people die if they fall in there.
8 0
3 years ago
Other questions:
  • Which of the following is NOT an example of general characteristic of expository writing? Select all that apply.. .
    12·2 answers
  • Some areas of the Earth receive more solar radiation than others. Which of the following results from the Sun's uneven heating o
    5·1 answer
  • Consider the case of the car starting at rest and accelerating forward. A. Since the air inside the car is not leaking out, it m
    7·1 answer
  • If I move 15ft foward, 15 ft backwards, 15 ft to the right, 15ft to the left where am I?
    7·2 answers
  • How do I find the resultant force of a skydiver falling with gravity constant of 10 newtons and his weight is 70 kg??
    5·1 answer
  • Suppose a skydiver (mass =100kg) is falling towards the earth. When the skydiver is 80 m above the earth he is moving at 60 m/s
    9·1 answer
  • How do you change yoru name on brainly
    8·2 answers
  • If an object triples its velocity, how does this effect its KE?
    8·1 answer
  • 3.00 kg block moving 2.09 m/s right hits a 2.22 kg block moving 3.92 m/s left. afterwards, the 3.00 kg block moves 1.71 m/s left
    7·1 answer
  • A cyclist is traveling along a road due east at 12 km/h and wind is blowing from south-west at 5 km/h . find the velocity of the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!