Answer:
x = 0.237
y = 0.0789
Explanation:
Vector with direction 18.4° and magnitude 0.250 has x and y components of:
x = 0.250 cos 18.4°
x = 0.237
y = 0.250 sin 18.4°
y = 0.0789
Part (a):
1- Since the resistors are in series, therefore, the total resistance is the summation of the two resistors.
Therefore:
Rtotal = R1 + R2 = 3.11 + 6.15 = 9.26 ohm
2- Since the two resistors are in series, therefore, the current flowing in both is the same. We will use ohm's law to get the current as follows:
V = I*R
V is the voltage of the battery = 24 v
I is the current we want to get
R is the total resistance = 9.26 ohm
Therefore:
24 = 9.26*I
I = 24 / 9.26
I = 2.59 ampere
Part (b):
To get the voltage across the second resistor, we will again use Ohm's law as follows:
V = I*R
V is the voltage we want to get
I is the current in the second resistor = 2.59 ampere
R is the value of the second resistor = 6.15 ohm
Therefore:
V = I*R
V = 2.59 * 6.15
V = 15.9285 volts
Hope this helps :)
One double bond consists 4 electrons, so 2 double bonds means 8 electrons
Answer: He has only move 0.2 yards
Explanation: When you subtract 18.3 from 18.5 you get 0.2 and that is how much he's moved
Answer:633.8 KJ
Explanation:
Given
mass of water
Initial temperature
Final temperature 
Specific heat of water
=4190 J/kg-k
heat of vaporization
Heat required for process
=heat to raise water temperature from 20 to 100 +Heat to vapourize water completely
Q=mc
Q=
Q=
Q=