1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
6

How many poles do you expect to see in your magnet? Look around your room. Make a list of 5 items that might be attracted to the

magnet: Make a list of 5 items that you think will not interact with the magnet: Check your hypothesis in (1.2) and (1.3) using a magnet. Did the magnet attract all of the items on your list in (1.2)? Did it interact with any of the items in part (1.3)?
Physics
1 answer:
jeyben [28]3 years ago
5 0

Answer:

1.1 Two poles: North and South Poles.

1.2 - Staple pin - Nail - Tip of my phone charger - Metal keys - Cloth Hanger

1.3 - Wooden bed cot - Plastic pen - Game pad - Wooden shelf - Paper - A T-shirt

1.4 Yes

1.5 No

You might be interested in
An electron accelerated from rest through a voltage of 780 v enters a region of constant magnetic field. part a part complete if
maxonik [38]
The electron is accelerated through a potential difference of \Delta V=780 V, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:
\frac{1}{2}mv^2 =  e \Delta V
where
m is the electron mass
v is the final speed of the electron
e is the electron charge
\Delta V is the potential difference

Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:
v= \sqrt{ \frac{2 e \Delta V}{m} } = \sqrt{ \frac{2(1.6 \cdot 10^{-19}C)(780 V)}{9.1 \cdot 10^{-31} kg} }=1.66 \cdot 10^7 m/s


Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:
evB=m \frac{v^2}{r}
where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
B= \frac{mv}{er}= \frac{(9.1 \cdot 10^{-31}kg)(1.66 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19}C)(0.25 m)} =3.8 \cdot 10^{-4} T
3 0
3 years ago
The components of vector A are Ax = +2.2 and Ay = -6.9 , and the components of vector B are given are Bx = -6.1 and By = -2.2. W
Zina [86]
For simplicity, let's call vector B-A  vector C  Then C is
Cx = (-6.1 - 2.2)  
Cy = (-2.2 - (-6.9))  Or,
Cx = -8.3  Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538
3 0
3 years ago
A photovoltaic panel of dimension 2 m × 4 m is installed on the roof of a home. The panel is irradiated with a solar flux of GS
Flura [38]

Answer:

(a) the electrical power generated for still summer day is 1013.032 W

(b)the electrical power generated for a breezy winter day is 1270.763 W

Explanation:

Given;

Area of panel = 2 m × 4 m, = 8m²

solar flux  GS = 700 W/m²

absorptivity of the panel, αS = 0.83

efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp

panel emissivity , ε = 0.90

Apply energy balance equation to determine he electrical power generated;  

transferred energy + generated energy = 0

(radiation + convection) +  generated energy = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s

(a) the electrical power generated for still summer day

T_s = T_{\infty} = 35 ^oC = 308 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W

(b)the electrical power generated for a breezy winter day

T_s = T_{\infty} = -15 ^oC = 258 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W

3 0
2 years ago
Which career professionals are part of the Architecture and Construction career cluster? Check all that apply.
oksian1 [2.3K]

Answer:

A,B,D,E,F

Explanation:

I took the test for yall.

3 0
3 years ago
You need to get to class, 300 meters away, and you arrive in 1 minute. What speed were you walking? (calculate in meters per sec
ella [17]
5 meters per second. 300 / 60(seconds)
3 0
2 years ago
Other questions:
  • Which of the following waves are mechanical waves?
    11·2 answers
  • The person in the middle weighs 500 n, and the tension on the rope is 400 n. what is the weight of the scaffolding?
    6·1 answer
  • A window washer stands on a scaffolding 30m above the ground. If he did 23,520J of work to reach the scaffolding, what is his ma
    11·1 answer
  • Pls help me guys simple question​
    6·1 answer
  • What is frictional force?​
    13·2 answers
  • Find the net rate of heat transfer by radiation in watts from a skier standing in the shade, given the following. She is complet
    9·1 answer
  • What does it mean to investigate science?
    6·1 answer
  • A car moving with a velocity 15m/s and accelerating by 5m/s² attempts to reach a car moving with 30 m/s velocity.What distance s
    14·1 answer
  • Neptune is approximately 4.5 billion kilometers from the sun. What is this distance in AU?
    13·1 answer
  • At an ocean depth of 10.0m, a diver's lung capacity is 2.40L. The air temperature is 32.0°C and the pressure is 101.30 kPa. What
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!