The answer is 0.405 M/s
- (1/3) d[O2]/dt = 1/2 d[N2]/dt
- d[O2]/dt = 3/2 d[N2]/dt
- d[O2]/dt = 3/2 × 0.27
- d[O2]/dt = 0.405 mol L^(-1) s^(-1)
Answer:
The pressure changes from 2.13 atm to 1.80 atm.
Explanation:
Given data:
Initial pressure = ?
Final pressure = 1.80 atm
Initial temperature = 86.0°C (86.0 + 273 = 359 K)
Final temperature = 30.0°C (30+273 =303 K)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
P₁ = P₂T₁ /T₂
P₁ = 1.80 atm × 359 K / 303 K
P₁ = 646.2 atm. K /303 K
P₁ = 2.13 atm
The pressure changes from 2.13 atm to 1.80 atm.
They dim unless more volts are added (batteries")
A . O2- because it is a negatively charged ion