Storm weather likely happens in the town when the air masses meet because of difference of temperature and humidity of both air masses.
<h3>What weather happens when air masses meet?</h3>
When air masses move by wind, they carry different weather conditions from the weather conditions of other region. This difference in weather conditions can create a severe storm.
So we can conclude that Storm weather likely happens in the town when the air masses meet because of difference of temperature and humidity of both air masses.
Learn more about air here: brainly.com/question/636295
#SPJ1
-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.
Answer:
Capacitance of cylindrical capacitor does not depends on the amount of charge on the conductors
Explanation:
Consider a cylindrical capacitor of length L, inner radius R₁ and outer radius R₂, permitivity ε₀ constant then capacitance of cylindrical capacitor is given by:
From this equation it is clear that capacitance of cylindrical capacitor is independent of the amount of charge on the conductors where as directly proportional permitivity constant and length of cylinder where as inversely proportional to natural log of ratio of R₂ and R₁
Answer:
C. 5.6 × 10^11 N/C
Explanation:
The electric field
at a distance
from a charge
is given by

where
is the coulomb's constant.
Now, in our case

;
therefore,


which is choice C from the options given<em> (at least it resembles it).</em>