Answer:
The terminal velocity of the diver is 115 m/s = 414 km/hr
Explanation:
At terminal velocity,
Fnet = mg - Fd = 0
Drag force, Fd = cρAv²/2
mg = cρAv²/2
Terminal Velocity of a body falling through a fluid as in a diver falling through air is given by
v = √(2mg/ρcA)
where m = mass of body falling through fluid = 80 kg
g = acceleration due to gravity = 9.8 m/s²
ρ = density fluid, density of air, as obtained from literature = 1.21 kg/m³
c = coefficient of drag friction of diver falling through air, as obtained from literature = 0.7
A = the area of the diver facing the fluid = 0.14 m²
v = √(2mg/ρcA) = √((2 × 80 × 9.8)/(1.21 × 0.7 × 0.14)) = 115 m/s = 115 × (3600/1000) km/hr = 414 km/hr
The radius of the sphere in meters is ,r =
Think about the angle the ground and the shadow make. Since the sun's beams are parallel, the angle created by the stick's shadow is also equal. Since the stick is 1 m high and its shadow is 2 m long, we know that the stick's angle is arctan 1/2. Therefore, by thinking of a right-angled triangle,
r/10 = tan [arctan(1/2)] = tan (1/2)
Since, tan (θ/2) = 1-cos(θ) / sin(θ)
we find that,
r/10 = 
Hence, r = 
So, the radius of the sphere in meters is ,r =
Learn more about radius (r) of the sphere here;
brainly.com/question/14100787
#SPJ4
Answer:
The most likely items to be used are;
Ultrasound and X-rays
Explanation:
A routine visit to a dentist consists of two areas of activities, including;
a) Dental examination and check up
b) Oral prophylaxis, and dental cleaning
The dental examination may involve the use of X-rays, which allow the detection of cavities between the teeth
The dental cleaning can be carried out with the use of an ultrasound cleaner, which allow the cleaning of sensitive teeth without hurting the patient
Therefore, the items most likely to be used during a routine dental visit are ultrasound and X-rays
Answer:
Get turned Into Water.
Explanation:
Combustion of Hydrogen involves combining oxygen and hydrogen essentially so when oxygen and hydrogen combine water is produced, following chemical equation describes this process.
.
Resulting product is two molecules of water.