Answer:
B. stearothermophilus and S. ruber
Explanation:
B. stearothermophilus and S. ruber
In solar evaporation ponds the temperature is higher and the salt concentration is also higher because of the water evaporated so sunder such extreme conditions this hybrid bacteria is capable of surviving. B. stearothermophilus is thermophilus bacteria which grows at high temperature and S. ruber is halophilic bacteria which grows in saline environment. So, these two bacteria best suited for the above hybrid condition.
<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
Im not for sure but i think it takes a couple hundred years (or according to the climate)
Answer:
power drain on an ideal battery, P = 0.017 W
Given:



Since,
and
are in parallel and this combination is in series with
, so,
Equivalent resistance of the circuit is given by:



power drain on an ideal battery, P =
P = 
P = 0.017 W
a)
for the puck :
F = force applied in the direction of pull
N = normal force on the puck in upward direction by the surface of table
W = weight of the puck in down direction due to force of gravity
b)
along the vertical direction , normal force balance the weight of the puck , hence the net force is same as the force of pull F .
so F = ma where m = mass of puck , a = acceleration
Fnet = F
c)
since the net force acts in the direction of force of pull F , hence the puck accelerates in the same direction .