Answer:
Conduction heat transfer is the transfer of <em>heat by means of molecular excitement within a material without bulk motion</em> of the matter.
Explanation:
Conduction heat transfer in gases and liquids is due to the collisions and diffusion of the molecules during heir random motion.
All three windows are the same size.
A has 10 complete waves visible through the window. B has 3, and C has 4.
So A must have the smallest wavelengths.
Answer:
You might even see a spark if the discharge of electrons is large enough. The good news is that static electricity can't seriously harm you. Your body is composed largely of water and water is an inefficient conductor of electricity, especially in amounts this small. Not that electricity can't hurt or kill you.
Explanation:
You might even see a spark if the discharge of electrons is large enough. The good news is that static electricity can't seriously harm you. Your body is composed largely of water and water is an inefficient conductor of electricity, especially in amounts this small. Not that electricity can't hurt or kill you.
Answer:
The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. ... The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.
Answer:
1.3823 rad/s
20.7345 m/s
28.66129935 m/s²

2006.29095 N radially outward
Explanation:
r = Radius = 15 m
m = Mass of person = 70 kg
g = Acceleration due to gravity = 9.81 m/s²
Angular velocity is given by

Angular velocity is 1.3823 rad/s
Linear velocity is given by

The linear velocity is 20.7345 m/s
Centripetal acceleration is given by

The centripetal acceleration is 28.66129935 m/s²
Acceleration in terms of g


Centripetal force is given by

The centripetal force is 2006.29095 N radially outward
The torque will be experienced when the centrifuge is speeding up of slowing down i.e., when it is accelerating and decelerating.