1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
11

A force on a particle depends on position such that f(x) = (3.00 n/m2)x 2 + (3.50 n/m)x for a particle constrained to move along

the x-axis. what work is done by this force on a particle that moves from x = 0.00 m to x = 2.00 m?
Physics
2 answers:
dmitriy555 [2]3 years ago
4 0
M = 0.21x ENJOY MY FRIend
ella [17]3 years ago
3 0

Answer:

Work done, W = 15 joules

Explanation:

It is given that,

The force acting on a particle depends on position such that,

F(x)=3x^2+3.5x

Let W is the work done by this force on a particle that moves from x = 0.00 m to x = 2.00 m. The expression for work done is given by :

W=\int\limits^{x_2}_{x_1} {F.dx}

W=\int\limits^{2}_{0} {(3x^2+3.5x).dx}

W=(x^3+1.75x^2)|^2_0

W = 15 Joules

So, the work done by this force on a particle is 15 joules. Hence, this is the required solution.

You might be interested in
Force is a vector because it has both ___
scoray [572]

Answer:

C. Size and Direction

6 0
3 years ago
4 properties of light
Neko [114]
-reflection and refraction of light
-dispersion of light
-absorption of light
-polarization of light
3 0
2 years ago
If an object is to rest on an incline without slipping, then friction must equal the component of the weight of the object paral
leonid [27]

Answer:

\theta = tan^{-1}\mu

Explanation:

As we know that if the object is placed on the inclined plane then the force of friction on the object is counterbalanced by the component of the weight of the object along the inclined plane.

So we can say

F_f = mgsin\theta

now if we increase the inclination of the plane then the component of the weight weight along the inclined plane will increase and hence the friction force will also increase.

As we know that the limiting value or the maximum value of friction force at the static condition is given by

F_f = \mu N

N = mg cos\theta

so we have

F_f = \mu (mg cos\theta)

so we will have

mg sin\theta = \mu (mg cos\theta)

so now we have

tan\theta = \mu

so maximum possible angle of the inclined plane is

\theta = tan^{-1}\mu

3 0
3 years ago
Which statement best describes the energy changes that occur while a child is riding on a sled down a steep, snow-covered hill?
Tema [17]
<span>Kinetic energy increases and potential energy decreases.
</span>
6 0
3 years ago
Read 2 more answers
An astronaut goes out for a space walk. Her mass (including space suit, oxygen tank, etc.) is 100 kg. Suddenly, disaster strikes
Marina CMI [18]

Answer:

<u>Part A:</u>

Unknown variables:

velocity of the astronaut after throwing the tank.

maximum distance the astronaut can be away from the spacecraft to make it back before she runs out of oxygen.

Known variables:

velocity and mass of the tank.

mass of the astronaut after and before throwing the tank.

maximum time it can take the astronaut to return to the spacecraft.

<u>Part B: </u>

To obtain the velocity of the astronaut we use this equation:

-(momentum of the oxygen tank) = momentum of the astronaut

-mt · vt = ma · vt

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

To obtain the maximum distance the astronaut can be away from the spacecraft we use this equation:

x = x0 + v · t

Where:

x = position of the astronaut at time t.

x0 = initial position.

v = velocity.

t = time.

<u>Part C:</u>

The maximum distance the astronaut can be away from the spacecraft is 162 m.

Explanation:

Hi there!

Due to conservation of momentum, the momentum of the oxygen tank when it is thrown away must be equal to the momentum of the astronaut but in opposite direction. In other words, the momentum of the system astronaut-oxygen tank is the same before and after throwing the tank.

The momentum of the system before throwing the tank is zero because the astronaut is at rest:

Initial momentum = m · v

Where m is the mass of the astronaut plus the equipment (100 kg) and v is its velocity (0 m/s).

Then:

initial momentum = 0

After throwing the tank, the momentum of the system is the sum of the momentums of the astronaut plus the momentum of the tank.

final momentum = mt · vt + ma · va

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

Since the initial momentum is equal to final momentum:

initial momentum = final momentum

0 = mt · vt + ma · va

- mt · vt = ma · va

Now, we have proved that the momentum of the tank must be equal to the momentum of the astronaut but in opposite direction.

Solving that equation for the velocity of the astronaut (va):

- (mt · vt)/ma = va

mt = 15 kg

vt = 10 m/s

ma = 100 kg - 15 kg = 85 kg

-(15 kg · 10 m/s)/ 85 kg = -1.8 m/s

The velocity of the astronaut is 1.8 m/s in direction to the spacecraft.

Let´s place the origin of the frame of reference at the spacecraft. The equation of position for an object moving in a straight line at constant velocity is the following:

x = x0 + v · t

where:

x = position of the object at time t.

x0 = initial position.

v = velocity.

t = time.

Initially, the astronaut is at a distance x away from the spacecraft so that

the initial position of the astronaut, x0, is equal to x.

Since the origin of the frame of reference is located at the spacecraft, the position of the spacecraft will be 0 m.

The velocity of the astronaut is directed towards the spacecraft (the origin of the frame of reference), then, v = -1.8 m/s

The maximum time it can take the astronaut to reach the position of the spacecraft is 1.5 min = 90 s.

Then:

x = x0 + v · t

0 m = x - 1.8 m/s · 90 s

Solving for x:

1.8 m/s · 90 s = x

x = 162 m

The maximum distance the astronaut can be away from the spacecraft is 162 m.

6 0
3 years ago
Other questions:
  • What is a virgin i dk
    15·1 answer
  • Which one of the following is a decomposition reaction?
    11·2 answers
  • which object has the most gravitational potential energy? A. an 8 kg book at a height of 3m B. an 5 kg book at a height of 3 m C
    7·2 answers
  • James took two pea plants, placing one in a dark closet and the other on a sunny window sill. both are located in air-conditione
    15·1 answer
  • The electric motor has an input energy of 50,000 joules each second. The motor transfers 35,000 joules of useful energy each sec
    14·1 answer
  • What causes volcanoes to form? Give at least one example of a volcano. Did this volcano erupt and, if so, what was the result of
    11·1 answer
  • A 6 kg block is sliding down a horizontal frictionless surface with a constant speed of 5 m/s. It then slides down a frictionles
    5·1 answer
  • What is the effect of divorce on females?​
    8·2 answers
  • A force of 100N moves a body on a horizontal frictionless surface when......
    13·1 answer
  • You are driving to the grocery store at 20 m/s. You are 110 m from an intersection when the light turns red. You have a reaction
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!