Answer:
both kinetic and potential energy
Explanation:
this is your ans
I hope it helps mate
I will always help you understanding your assingments
have a great day
#Captainpower :)
Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:
f = f0(1 + v/c)
115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span>
v = 51,45 m/s </span>
Kinetic energy=1/2mv^2
=1/2(142*10^-3)(42.9)^2=130.6=131J
According to Newton's Second Law of Motion :
The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.
Force acting = Mass of the Object × Acceleration
Given : Force = 50 newton and Mass of the Object = 10 kg
Substituting the respective values in the Formula, we get :
50 N = 10 kg × Acceleration

Acceleration of the Object = 5 m/s²
Answer:
Option d
The minimum angular separation between two objects that the Hubble Space Telescope can resolve is
.
Explanation:
The resulting image in a telescope that will be gotten from an object is a diffraction pattern instead of a perfect point (point spread function (PSF)).
That diffraction pattern is gotten because the light encounters different obstacles on its path inside the telescope (interacts with the walls and edges of the instrument).
The diffraction pattern is composed by a central disk, called Airy disk, and diffraction rings.
The angular resolution is defined as the minimal separation at which two sources can be resolved one for another, or in other words, when the distance between the two diffraction pattern maxima is greater than the radius of the Airy disk.
The angular resolution can be determined in analytical way by means of the Rayleigh criterion.
(1)
Where
is the wavelength and D is the diameter of the telescope.
Notice that it is necessary to express the wavelength in the same units than the diameter.
⇒
Finally, equation 1 can be used.
Hence, the minimum angular separation between two objects that the Hubble Space Telescope can resolve is
.