A. Of a given element have different numbers of neutrons
Thus problem is providing us with the mass of iron (III) oxide as 12.4 g so the moles are required and found to be 0.0776 mol after the calculations:
<h3>Mole-mass relationships:</h3>
In chemistry, we use mole-mass relationships in order to calculate grams from moles and vice versa. In this case, since we are given the mass of iron (III) oxide as 12.4 g one can calculate the moles by firstly quantifying its molar mass:

Then, we prepare a conversion factor in order to cancel out the grams and thus, get moles:

Learn more about mole-mass relationships: brainly.com/question/18311376
Answer:
The correct option is;
(B) 1 s², 2s², 2p⁶, 3s², 3p³
Explanation:
The electron configuration is the outline of the electron arrangement about a nucleus
In the systemic pattern of electron arrangement within an atom, there are, s, p, d, f orbitals
The maximum number of electrons in an s, p and d orbital = 2, 6, and 10 respectively
Based on Aufbau's principle the electrons are arranged based on the order of their energy level
The charge is presented by the number of electrons in the outermost shell, an element able to form an ion of charge of -3 will gain 3 electrons to complete its outermost shell
Among the options given, option B is the only option that has the capacity to take the electrons to complete the number of electrons in the p orbital outermost shell to 6 from 3, that is 3p³ + 3e⁻→ 3p⁶.
Answer:
539.3mmHg of H₂
179.7mmHg of N₂
Explanation:
Ammonia, NH₃, reacts completely producing N₂ and H₂ thus:
2 NH₃ → N₂ + 3H₂
<em>That means there are produced 4 moles of gases and 3 are of H₂ and 1 of N₂</em>
Total pressure (Sum of pressures of N₂ and H₂) is 719mmHg. 3 parts are of H₂ and 1 of H₂
Thus, partial pressures of the products after reaction are:
719mmHg ₓ (3 H₂ / 4) = 539.3mmHg of H₂
719mmHg ₓ (1 N₂ / 4) = 179.7mmHg of N₂
Answer:
Hence, 15.99 g of solid Aluminum Sulfate should be added in 250 mL of Volumetric flask.
Explanation:
To make 0.187 M of Aluminum Sulfate solution in a 250 mL (0.250 L) Volumetric flask
The molar mass of Aluminum Sulfate = 342.15 g/mol
Using the molarity formula:-
Molarity = Number of moles/Volume of solution in a liter
Number of moles = Given weight/ molar mass
Molarity = (Given weight/ molar mass)/Volume of solution in liter
0.187 M = (Given weight/342.15 g/mol)/0.250 L
Given weight = 15.99 g