Answer:
ΔH of the reaction is -802.3kJ.
Explanation:
Using Hess's law, you can know ΔH of reaction by the sum of ΔH's of half-reactions.
Using the reactions:
<em>(1) </em>Cgraphite(s)+ 2H₂(g) → CH₄(g) ΔH₁ = −74.80kJ
<em>(2) </em>Cgraphite(s)+ O₂(g) → CO₂(g) ΔH₂ = −393.5k
J
<em>(3) </em>H₂(g) + 1/2 O₂(g) → H₂O(g) ΔH₃ = −241.80kJ
The sum of (2) - (1) produce:
CH₄(g) + O₂(g) → CO₂(g) + 2H₂(g) ΔH' = -393.5kJ - (-74.80kJ) = -318.7kJ
And the sum of this reaction with 2×(3) produce:
CH₄(g) + 2 O₂(g) → CO₂(g) + 2H₂O(g) And ΔH = -318.7kJ + 2×(-241.80kJ) =
<em>-802.3kJ</em>
The type of energy used is kinetic energy. Kinetic energy is the energy of motion.
I turned in this exact assignment today haha
the blood vessels dilate to draw body heat away from the body and towards the surface of the skin
sweat glands release sweat, when sweat evaporates it releases heat
Answer:
Maintenance of homeostasis usually involves negative feedback loops. These loops act to oppose the stimulus, or cue, that triggers them.